TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor

نویسندگان

  • Arunabha Ghosh
  • Viet Thong Le
  • Jung Jun Bae
  • Young Hee Lee
چکیده

Electrochemical capacitors with fast charging-discharging rates are very promising for hybrid electric vehicle industries including portable electronics. Complicated pore structures have been implemented in active materials to increase energy storage capacity, which often leads to degrade dynamic response of ions. In order to understand this trade-off phenomenon, we report a theoretical model based on transmission line model which is further combined with pore size distribution function. The model successfully explained how pores length, and pore radius of active materials and electrolyte conductivity can affect capacitance and dynamic performance of different capacitors. The powerfulness of the model was confirmed by comparing with experimental results of a micro-supercapacitor consisted of vertically aligned multiwalled carbon nanotubes (v-MWCNTs), which revealed a linear current increase up to 600 Vs(-1) scan rate demonstrating an ultrafast dynamic behavior, superior to randomly entangled singlewalled carbon nanotube device, which is clearly explained by the theoretical model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale modeling of carbon nanotube growth on a supercapacitor electrode

Vertically Aligned Carbon Nanotube (VACNT) – based electrochemical double layer capacitors, called “supercapacitors” are intermediate systems that can potentially bridge the power/energy gap between traditional dielectric capacitors (high power) and batteries (high power density). However, their future is uncertain because of technical stumbling block in their fabrication related to the post-gr...

متن کامل

Using Electrochemical Impedance Spectroscopy to Characterize Vertically - Aligned Carbon Nanotube Forest Porosimetry

Carbon nanotubes have generated much research interest and potential applications due to their unique properties such as their high tensile strength, high thermal conductivity, and unique semiconductor properties. Vertically-aligned carbon nanotubes (VA-CNTs) have been used in applications for electrochemical systems in energy storage systems and desalination systems. Typical methods of charact...

متن کامل

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

Biofouling Behavior on Forward Osmosis Using Vertically Aligned CNT Membrane on Alumina

Nowadays, forward osmosis (FO) with many advantages in water treatment, are so attractive for researchers and investigators that the studies are going to optimize and increase its efficiency. However one of the most controversial operating malfunctions of FO process is fouling that limits the FO global application. In the following research, vertically aligned carbon nanotube (VACNT) on alumina...

متن کامل

1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013